
The Performance Evaluation
Research Center (PERC)

David H Bailey
NERSC, Lawrence Berkeley National Laboratory

dhbailey@lbl.gov

PERC Overview

§ An “Integrated Software Infrastructure Center” (ISIC)
sponsored under DoE’s SciDAC program.

§ Approximately $2.4 million per year for 4 years.
§ Four DoE laboratories.
§ Four universities.
§ Mission:
§ Develop a science of performance, and engineer tools

for performance analysis and optimization.
§ Focus on large, grand-challenge calculations, such as

in SciDAC application projects.

PERC Participants

Laboratories:
• LBNL (Bailey, Strohmaier)
• LLNL (Quinlan, de Supinski, Vetter)
• ORNL (Worley, Dunigan)
• ANL (Hovland, Norris)
Universities:
• Univ of Tennessee (Dongarra)
• Univ of Illinois (Reed)
• Univ of Maryland (Hollingsworth)
• UCSD Supercomputer Center (Snavely)

Performance: Does It Matter?

Consider the economic value of improving the
performance of a single high-profile, high-end
scientific application code by 20%. Assume:
> $10 million computer system lease cost per year.
> $5 million per year in site costs, support staff, etc.
> 10-year lifetime of code.
> Code uses 5% of system cycles each year.

Savings: $1,500,000.
Scientific benefit probably much higher.

Feedback to Vendors

§ We rely heavily on commercial vendors for high-
performance computer systems.

§ We are invited by vendors to provide guidance on the
design of current and future systems.

BUT
§ At present we can provide only vague information –

little if any quantitative data or rigorous analysis.

As a result, we have little voice in future designs.

Thesis

For the foreseeable future, time to solution will be
dominated by a code’s ability to effectively utilize the
memory hierarchy, including local and distributed
memory.

Questions

§ How can we best measure the memory hierarchy
behavior of a particular code on a particular system?

§ Can we construct accurate models of performance,
based on data that is easily obtained?

§ Can we accurately project the performance of a
future version of a code on a future system?

§ If we determine that a given code is running sub-
optimally, can we facilitate the necessary changes to
improve performance?

Towards a Science of
Performance

§ Better benchmarks.
§ Performance monitoring tools.
§ Performance modeling and analysis.
§ Software tools to automatically or semi-automatically

optimize user codes.

Benchmarks

§ Indispensable for system procurements.
§ Used by scientists to estimate performance of

applications on present and future systems.
§ Used by computer scientists to quantitatively

evaluate various options in hardware, software and
algorithms.

BUT in many cases,
§ Problem size is too small for today’s high-end

systems.
§ Algorithm or application is no longer meaningful.
§ Doesn’t precisely target the phenomenon of interest

(cache behavior, communication, etc.).

Better Benchmarks

Discipline-specific benchmarks:
§ Polished, concise versions of real user codes.
§ Represent strategic application areas.

Kernel benchmarks:
§ Extracted from real codes.
§ Reduce complexity of analyzing full-size benchmarks.

Low-level benchmarks:
§ Measure key rates of data access at various levels of

memory hierarchy.
§ Measure issue rates of functional units, network

bandwidth and latencies, costs of TLB misses, OS
context switches, I/O rates, etc.

Measured Memory Access
Patterns [Alan Snaveley (SDSC)]

MAPS Alpha 21264

0
50

100
150
200
250
300
350
400
450

gr
in

d
L1

gr
in

d
L1

cy
cl

ic
al

 L
1/

L2

gr
in

d
L2

st
rid

e
1

us
e

ca
ch

e
lin

e

st
rid

e
2

us
e

ca
ch

e
lin

e

ra
nd

om
, u

se
 c

ac
he

lin
e

st
rid

e
8

ra
nd

om
, t

hr
ow

 a
w

ay
lin

e

of
f p

ro
ce

ss
or

M
 M

O
P

/s

Performance Monitoring and
Collection Tools

End-user tools:
Integrate various analysis and measurement

approaches, providing a common interface for
comparing this data with benchmark and source code.

Flexible instrumentation systems:
Capture hardware and software interactions, instruction

execution frequencies, memory reference behavior,
and execution overheads.

Data management infrastructure:
Track performance experiments and data across time

and space.

SvPablo

§ A graphical environment for instrumenting application
source code and browsing performance data.

§ Supports performance data capture, analysis,
presentation.

§ C, F-77, F-90.
§ Parallel and sequential systems.
§ Interface to hardware performance counters, via

PAPI toolkit.
§ Planned enhancements:
§ Port to additional platforms: Alpha, IA-64, etc.
§ Support C++ codes.
§ Integrate with other tools.

Work is being done by Dan Reed (U Illinois) and others.

SvPablo Graphical Interface

Sigma++

§ Uses runtime information to extract a detailed
representation of an application’s memory reference
pattern.

§ Post-execution tools provide insight into memory
performance issues, including cache misses.

§ Gathers compact address traces for regular loops.
§ Planned enhancements:
§ Handle irregular references and conditional loops.
§ Statistical summary of irregular behavior.
§ Predict memory performance based on trace data.
§ Handle parallel shared memory systems.

Work is being done by Jeff Hollingsworth (U Maryland) and others.

Other Useful Performance
Data Tools

§ PAPI: A unified cross-platform tool to collect
hardware performance monitor data.

§ Dyninst: Provides a machine independent interface
to permit the creation of tools and applications that
use runtime code patching.

§ Repository in a box: A toolkit to facilitate the
construction and management of performance data
collections.

Work is being done by Jack Dongarra (U Tennessee), Jeff
Hollingsworth (U Maryland) and others.

Performance Modeling and
Analysis

Holy Grail of HPC performance modeling:
§ A tool and/or methodology that accurately predicts the

performance of a full-scale application program, using
a compact formula based on easily measurable data.

Difficulties:
§ Performance function depends on many variables,

including system architecture, cache design,
numerical algorithms used, array sizes and others.

§ Complicated interactions among variables.
§ Performance function is highly non-convex – many

local maxima and minima.

Analytic Phase Modeling

§ Performance models based on straightforward
counts of operations from source code.

§ Each “phase” of the computation has its own formula.
§ Advantages:
§ Reasonably accurate for some parameter ranges.
§ Quite easy to implement.

§ Limitations:
§ Does not explain why rates change.
§ Does not suggest how performance can be improved.

Work is being done by Pat Worley (ORNL) and others.

Application Signatures

Characterize fundamental aspects of an application,
independent of the machine where it executes.

Examples:
§ Ratio of memory references to arithmetic operations.
§ Memory reference patterns.
§ Synchronization points.
§ Instruction-level parallelism.
§ Thread-level parallelism.
§ Data dependencies.
§ I/O characteristics.

Work is being done by Bronis De Supinski (LLNL), Jeff Vetter
(LLNL), Alan Snaveley (SDSC) and others.

Machine Signatures

Characterize fundamental aspects of a machine,
independent of the applications executing on it.

Examples:
§ Latencies and bandwidths of memory hierarchy on

local node.
§ Latencies and bandwidths to remote nodes.
§ Instruction issue rates.
§ Cache sizes.
§ TLB sizes.

Performance-predictive convolutions:
Combines application and machine signatures.

Work is being done by Alan Snaveley (SDSC) and others.

Other Modeling Techniques

§ Performance algebra (Snaveley and Reed):
§ Constructs parameters for various analytic models.

§ Black-box performance modeling (Strohmaier):
§ Combines generic algebraic functions with results

from basic performance measurements.
§ Back-fitting and statistical methods (Strohmaier,

Vetter):
§ Uses sophisticated statistical methods based on

empirical data.
§ Performance bound modeling (Hovland).

Each of these schemes has potential advantages and
disadvantages – we need to try and compare them
on numerous specific problems.

Performance Optimizers

With accurate, relatively easily obtained performance
information, most users can make the necessary
code modifications for improved performance.

BUT:
§ Project management pressures often leave little or no

time for performance tuning.
§ Application scientists are properly focused on their

scientific discipline, not on the computer science of
performance.

§ Some codes are too large – automatic and/or semi-
automatic tools are required.

Performance Optimizers

ROSE (Quinlan, Hovland):
§ Extensible mechanism for compile-time optimization.
§ Defines high-level grammars specific to user-defined

abstractions.

New Harmony (Hollingsworth):
§ Automatically adapts performance based on runtime

observations of machine, operating environment and
dataset.

ATLAS (Dongarra):
§ Self-tuning linear algebra software.

AEOS (Dongarra):
§ Extension of ATLAS concept to more general

applications.

Performance Optimization:
Other Techniques

Performance portability programming:
§ Techniques to insure that code runs at near-optimal

performance across a variety of modern systems.

Performance assertions:
§ User-specified run-time tests that possibly change the

course of the computation depending on results.
§ Need a flexible, language-independent syntax.

Work is being done by Pat Worley (ORNL), Jeff Vetter (LLNL) and
others.

Summary

§ Achieving optimal performance on HPC systems has
compelling economic and scientific rationales.

§ Performance is poorly understood – in depth-studies
do not exist except in a handful of cases.

§ PERC will pursue “performance science” and
“performance engineering”, including improved
benchmarks, monitoring tools, modeling techniques,
and optimizers.

ENABLING TECHNOLOGIES

Developing a science for understanding performance of scientific applications on high-end computer
systems, and engineering strategies for improving performance on these systems.

Understand the key factors in applications that affect performance.
Understand the key factors in computer systems that affect performance.
Develop models that accurately predict performance of applications on systems.
Develop an enabling infrastructure of tools for performance monitoring, modeling

and optimization.
Validate these ideas and infrastructure via close collaboration with DOE SC and other

application owners.
Transfer the technology to end-users.

GOALS
Optimize and Simplify:
• Profiling of real applications
• Measurement of machine capabilities

(emphasis on memory hierarchy)

• Performance prediction
• Performance monitoring
• Informed tuning

DOE LABS

ANL LBNL
LLNL ORNL

UNIVERSITIES

UCSD UI-UC
UTenn UMD

Enhanced
Scientific

Simulations
& Experiments

Scientific
Simulations

& Experiments

» Climate Modeling
» Astrophysics
» Genomics & Proteomics
» High Energy Physics

Application
Signatures

Machine
Signatures

Bound
Models

Phase
Models

C O N V O L U T I O N S

ROSE SvPablo

PAPI Sigma++
(IBM)

DynInst

